Large deviation principle of occupation measure for stochastic Burgers equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Deviations for a Stochastic Burgers’ Equation

We prove the large deviations principle (LDP) for the law of the solutions to a stochastic Burgers’ equation in the presence of an additive noise. Our proof is based on the weak convergence approach.

متن کامل

A large deviation principle for the Yang-Mills measure

We prove the first mathematical result relating the Yang-Mills measure on a compact surface and the Yang-Mills energy. We show that, at the small volume limit, the scaled Yang-Mills measures satisfy a large deviation principle with the Yang-Mills energy as rate function. This gives some rigorous content to the informal description of the Yang-Mills measure as the Gibbs measure of the Yang-Mills...

متن کامل

Multidimensional Stochastic Burgers Equation

We consider multidimensional stochastic Burgers equation on the torus T and the whole space R . In both cases we show that for positive viscosity ν > 0 there exists a unique strong global solution in L for p > d. In the case of torus we also establish a uniform in ν a priori estimate and consider a limit ν ↘ 0 for potential solutions. In the case of R uniform with respect to ν a priori estimate...

متن کامل

Stochastic Sub - Additivity Approach to the Conditional Large Deviation Principle

University of Chicago Given two Polish spaces AX and AY, let ρ AX × AY → d be a bounded measurable function. Let X = Xn n ≥ 1 and Y = Yn n ≥ 1 be two independent stationary processes on AX and A ∞ Y , respectively. The article studies the large deviation principle (LDP) for n−1 ∑n k=1 ρ Xk Yk , conditional on X. Based on a stochastic version of approximate subadditivity, it is shown that if Y s...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincare (B) Probability and Statistics

سال: 2007

ISSN: 0246-0203

DOI: 10.1016/j.anihpb.2006.07.003